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The tensile instability in smoothed particle hydrodynamics results in a clustering
of smoothed particle hydrodynamics (SPH) particles. The clustering is particularly
noticeable in materials which have an equation of state which can give rise to negative
pressures, but it can occur in gases where the pressure is always positive and in
magnetohydrodynamics (MHD) problems. It is a particular problem in solid body
computations where the instability may corrupt physical fragmentation by numerical
fragmentation which, in some cases, is so severe that the dynamics of the system
is completely wrong. In this paper it is shown how the instability can be removed
by using an artificial stress which, in the case of fluids, is an artificial pressure.
The method is analyzed by examining the dispersion relation for small oscillations
in a fluid with a stiff equation of state. The short and long wavelength limits of the
dispersion relation indicate appropriate parameters for the artificial pressure and, with
these parameters, the errors in the long wavelength limit are small. Numerical studies
of the dispersion relation for a wide range of parameters confirm the approximate
analytical results for the dispersion relation. Applications to several test problems
show that the artificial stress works effectively. These problems include the evolution
of a region with negative pressure, extreme expansion in one dimension, and the
collision of rubber cylinders. To study this latter problem the artificial pressure is
generalized to an artificial stress. The results agree well with the calculations of other
stable codes. © 2000 Academic Press

1. INTRODUCTION

If a solid is stretched then attractive forces between the atoms resist the stretching.
the solid is compressed repulsive forces between the atoms resist the compression. |
continuum description the attractive forces produce an elastic pressure which becc
negative when the solid is stretched and positive when it is compressed. For an ideal
without defects, a stable configuration can be reached with the elastic forces balancin
imposed force until the plastic limit is reached. Most real solids have defects, and the s
breaks and fragments under impact.
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If a solid is simulated using the particle method smoothed particle hydrodynamics (S|
the solid is replaced by a set of SPH particles [1-3]. The forces between these particle
derived from the equations of motion and they depend on the pressure. When the press
positive the SPH particles repel each other just as the atoms do. When the solid is stre
the SPH particles attract each other. However, unlike the behavior of the atoms ina s
the attraction can result in an instability which shows up as particles forming small clurr
This instability was first studied in detail by Swegdeal. [4] who related the instability
to a combination of the negative pressure and the sign of second derivatives of the
interpolating kernel. A very comprehensive study of the instability was made by Morris [

The instability is also known to occur in gas dynamics problems where the pressul
always positive [6], though detailed studies of SPH for astrophysical gas dynamics u
the cubic spline kernel [7] do not show this clumping. An instability identical to the tens
instability arising from a change in sign of the magnetic field stress tensor in magne
hydrodynamics (MHD) was discovered by Phillips and Monaghan [8] which they analys
through the dispersion relation for MHD waves.

There have been a number of attempts to eliminate this tensile instability. Morris
examined changes to the SPH interpolating kernel which, while successful in some c:
were not uniformly satisfactory. Randles and Libersky [9] used dissipative terms, which t
call conservative smoothing, to remove the instability. However, this is not satisfactory ir
cases [10]. Johnson and Beissel [11] combine normalizing the kernels to handle boun
effects with a quadratic kernel to reduce the tensile instability. Unlike the cubic spli
kernel the derivative of their kernel is nonzero at the origin and in this respect the kel
is similar to one proposed by Schussler and Schmitt [6]. However, the second derivativ
the quadratic kernel of Johnson and Beissel [11] is discontinuous and this makes the k
more dispersive than the cubic spline and more sensitive to particle disorder. The kern
Schussler and Schmitt [6] does not even have continuous first derivatives.

SPH can be considered as a simple example of the class of meshless methods
review see [12]). Dilts [13] makes use of one formulation of the meshless methods wt
SPH is generalized by using an interpolant which gives accurate derivatives regardle
the positions of the SPH particles. These more accurate results require much more !
(a factor 7 to 8 times slower than standard SPH) so that even if the tensile instabilit
eliminated entirely the method may not be competitive with other techniques. Howe
despite good results for a number of tests, the tensile instability still occurs though
growth is much smaller (by nearly two orders of magnitude in some cases) than for stan
SPH. In a different study of meshless methods Beissel and Belyschko [14] found a s
wavelength instability which they removed by introducing an artificial quadratic term ir
their variational principle (see their Eq. (19)).

Some computational studies of fracture in brittle materials have been based on !
simulations (see for example [15, 2]) which adopt the practical view that brittle soli
break up before a tensile instability can grow significantly. Their simulations incorpor:
a damage model which describes the growth of small fractures and the resulting los
strength during an impact. With this model the brittle solid fragments before the ten:
instability is significant. Despite this practical approach to handling the tensile instabi
problemitcan hardly be called a desirable situation to have a numerical instability compe
with a physical instability. The aim of this paper, therefore, is to modify the standard S
equations so that the tensile instability is eliminated entirely and, with it, the confus
between physical and numerical fragmentation.
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The clumping of the SPH particles is unphysical because it will be prevented inareal s
by the repulsive forces between the atoms. This suggests that the SPH tensile insta
can be prevented by introducing a small repulsive term between the SPH particles. In
paper we propose a form for this repulsive term and show that the tensile instability
be removed while retaining the desirable features of SPH. The changes to a standard
program are minor.

The plan of this paper is to first study how this repulsive term affects the dispers
relation for small vibrations in a fluid with a stiff equation of state. In this case the repulsi
term is equivalent to an artificial pressure. The analysis of the dispersion relation indic:
how to relate the repulsive term to the fluid pressure, and indicates appropriate value:
the parameters. Applications to a circular patch of fluid with negative pressure, and to
stretching of fluid, show that the repulsive term removes the tensile instability. Quantita
measures of the accuracy are provided by a Lagrangian patch test similar to that use
Dilts [13]. To show that the method works well for two-dimensional elastic materials v
simulate the collision of two rubber cylinders for which the artificial pressure is replac
by an artificial stress. Finally, to confirm that there are no undesirable effects if the artific
pressure is used in complex fluid dynamical simulations, we simulate the sinking c
weighted box into a tank of liquid. In this example the simulation without the artifici:
pressure does not show sign of the tensile instability except possibly at the tip of
plunging wave where fragmentation can occur. The simulation with the artificial press
retains the good features of the simulation without the artificial pressure while decrea:
the breakup of the tip of the plunging wave. These SPH simulations give good agreen
with experiment [16].

2. THE REPULSIVE TERM

The acceleration of SPH particdein a fluid is given by
dva
- = —Z 2 + Map | VaWap + g, (2.1)

where the summation is over all particles other than pari¢tbough in practice only near
neighbors contribute because the keiéhas a finite range)P is the pressure, angd
is the densityIl,, produces a shear and bulk viscosity (for further details, see [17, 18
The kernelW,;, (see below) is a function of the distancg between the particles and
b, andV, denotes the gradient taken with respect to the coordinates of patidl®ody
force/masg has been included.

The equation of state we use has the form

P:’)OC‘Z’K’)Y— } (2.2)
14 L0

wherepg is the reference density, is the speed of sound at the reference density,yaisd
taken as 7 to make the equation of state stiff.

In this papeW is the cubic spline kernel normalized for two-dimensional systems [17
Writing g =rap/ h this kernel has the following form:
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If g <1then

_ 10 3, 3.,
et = 7 (1 5t 30

else, if 1< q <2, then

10

W ) =55 (2— 9°,

elsew =0.

The repulsive force must increase as the separation between the two parécidd
decreases. A possible form for this force is the Lennard—Jones force. However, in the pre
case where we are removing a numerical instability, it seems more natural to write
repulsive force in terms of the kernel. A suitable function which increases as the separ
decreases is

_ W(rab)
W(Ap)’

ab (2.3)
whereAp denotes the average particle spacing in the neighborhood of partiptepor-
tional to the interpolation length scatewhich determines the width of the kernel).

We then replace

P.
L S
Pa P

with

P
4%+%+R&+Mm (2.4)
P3 Pp

wheren > 0 and the factoR depends on the pressure and density. The repulsive force te
can be considered an artificial pressure.

For the cubic spline kernel the ratM/(0)/W(Ap) has the value 4 ih equalsAp
and, if h=1.3Ap (the typicalh used in this paper), the ratio is 2.2. For the fluid dy-
namical simulations we take equal to 4, and witlh equal to 1.2\p, the repulsive force
increases by a factor 0¥23 asr,, decreases fromhp to zero. The ratioV(0)/ W(Ap)
decreases rapidly in the domdirx r,, < 2h. For example, in this domain, the cubic spline
kernel decreases according to

<2-—“m)3 (2.5)
h)
and the repulsive term therefore decreases as
<2-“m>3i (2.6)
h

In the fluid dynamical simulations described belows 4 and only the nearest neighbors
are significantly affected by the artificial pressure.
The factorR can be determined by relating it to the pressure. We write

R=Ry+ Ry, 2.7)
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and anticipating later results we determiRgby the rule, ifP, <0

6|Pa|

Ra= (2.8)

a
otherwiseR; is zero. The rule foR, is obtained by replacing with b in (2.8). A typical
value ofe is 0.2, though the appropriate value dependé on, and the number of spatial
dimensions.
For problems involving liquids there is slight tendency for the particles to form loc
linear structures. These are removed if a small artifical pressure is included even if
pressure is positive. Accordingly, #; > 0 andP, > 0,

R= 001( Pa +5;> (2.9)
lOa Pp

However, the effects produced by this small pressure are largely cosmetic and are less
1% in all the examples studied.

In the continuum limit the summations can be replaced by integrals. This limit assur
the number of particles tends to infinity ang — 0. In addition the number of particles
within the range of the kernel should also tend to infinity (to guarantee the error in -
interpolation integrals vanishes) which requireg/ h — 0. The artificial pressure term in
the case wher® is negative throughout then becomes

VP fW"(r)VW(r)d
€ / (r)VW(r) dr (2.10)
p Wn(Ap)
For a gaussian kernel iN dimensions the artificial pressure term becomes
VP
€ (2.11)

DV

where a term exmAp?/ h?) has been replaced by 1 as required for the continuum limi
Sincee ~ 0.1 the artifical pressure term is typically 0.4% in two dimensions and 0.2
in three dimensions. However, because the artificial pressure decreases very rapidly
separation the integral is a poor approximation to the particle summation. The best estil
of the effect of the artificial pressure term is from dispersion relations and dynami
simulations. These are considered below.

3. THE DISPERSION RELATION

We consider an infinite two dimensional lattice of SPH particles with nearest neighbo
separated by a distaneep. The initial densityp is constant and the mass per SPH particle
mis p(Ap)2.

Theory

The inviscid equations of motion are the acceleration equation,

dva

. Z ( + 2 + R fanb) VaWab, (31)
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the continuity equation,

doa _

dt = Z m(Va - Vb) : VaWab, (3-2)
b
and
dr
d—ta =Va. (3.3)

We assume a perturbation solution of the form

Va = Vkd KTaet) (3.4)
la = ra+ Xké &Ta=eh, (3.5)

and
Pa= 5+ Dei (k~Fafwt)’ (36)

whereV is much smaller than the speed of soukds the wave vectolk denotesk/|k]|,
andr, is the unperturbed position of partice From the equation of state,

O

we find, on replacing, with (o + 80,), that

Pa

P2

o-$p20-(3))]

The speed of sound is given by

=
= = +Bopa, (3.8)

where

2_ 2 3 -
cs=C| — . (3.10)
£o
and
2 14
_% [1— <p_°) } (3.11)
oy p
Substituting the expressions (3.4) to (3.9) into the equations of motion, we find

2P _ _
w*="=S+RpS+ Bp?S;, (3.12)
0
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where
S =(Ap)® ) [1—cosk - p)] VW, (3.13)
Szz(Ap)ZZ[l—cos(k-r_b)]V(f”VW), (3.14)
S=Ap) _sink-Tp)k- VW, (3.15)

and the summations are over all particles. In the expressions fd3; ttiee origin of the
coordinate system has been shifted to the unperturbed position of parteldW denotes
W(rb).

Short Wavelength Limit

Because the tensile instability begins with the clumping of pairs of patrticles it is a sh
wavelength instability. There are no simple general approximations to the dispersion rele
in this case, but useful information can be found easily by evaluating the summations
the case wherh is Ap (so that only nearest and next nearest neighbors contributek an
has the valuer/ Ap (which further reduces the number of contributing terms) and the wa
propagates along theaxis. We find

im0 (5'7_1P+Rp11+3n+2(2—~/§)3”+1(3n+3—ﬁ)]>. (3.16)
T (Ap?2\ o

If n> 2 the factor multiplyingRp can be approximated kit + 3n). If P > 0 the system is
stable withR=0. If P < 0 the system is stable R satisfies the condition

5.71P|

Z Tk (3.17)
Accordingly, if h= Ap andn=4 we can stabilize the system by choosRg O.44I5/;7
and therefore take=0.22. The casé = Ap is of course is very simple because there i
only a contribution from nearest and next nearest neighbors. However, it does indicate
appropriate form oR for the later applications where3l< h/Ap < 1.5.

The dispersion relation for a one-dimensional system can be obtained easily from (3
to (3.15). In this case the value & for stability whenk=mAp andh= Ap is given
by

4 |P|
R= — 3.18
3n+2 p?2’ ( )
so that
2
= 3.19
€ 3n+2 ( )

ande =0.14ifh=Apandn=4. If h=1.3Apwe finde = 1.6/(2.9n 4+ 1.6) which has the
value 0.11 ifn = 4. For the casb = 1.5Ap andn =4 we finde = 0.06. These results show
that the stability of the system increase$@ap increases.
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Long Wavelength Limit
If k is sufficiently small, andh is sufficiently large compared to the particle spacing, th
summations can be replaced by integrals. We find

2P
w2=k2< W+ RpQ + Bp w2> (3.20)
o

whereW is the two-dimensional Fourier transform &,

W= /W(r)e”” dr, (3.21)
andQ is given by
Wn+l(r)
gkr . 22
(1+n)/ Wn(Ap) ar (3.22)

We can estimate the form @ by evaluating the integral for a Gaussian kernel:

e (/h?
W(r) = e (3.23)
We find
Q= eI T_El)z AP/ g Ke*/4n+1) (3.24)

If k is sufficiently small we can replad® with 1 because the kernels are normalized t
1. In this case (3.20) becomes

R,(T 2/ h2

2 2.2 2 nAp</h

=k2¢2 + kK2 ——— P/, 3.25

v T 429

If P >0 we can takeR=0 and (3.25) is the exact dispersion function. The estimate
R from the short wavelength limit suggests tfatlepends om primarily through a factor
1/(1+ 3n). To minimize errors in the long wavelength limit we therefore chooge
minimize the functiorG defined by

enApz/h2

A+ 3n)(n+1)2° (3.26)

G(n) =

In SPH calculations £ h/Ap < 1.5p. If h/Ap =1 the minimum occurs fan = 2.3. How-
ever, in this paper we normally take2b<h/Ap < 1.5. For the lower limit the minimum
occurs forn =3.9. For the upper limit the minimum value @& is 0.015 ain =6, butG
never exceeds 0.024 for allin the range 3< n < 7 and has the value 0.018 for=4. In
the case of the Gaussian kernel we can thereforernakd for 1.25<h/Ap < 1.5 with
confidence that the deviation from the exact long wavelength dispersion relation is clos
the minimum.
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Finally we note that the long wavelength limit of the dispersion relation in the ca
P <0, h/Ap=15, nis 4, ande is 0.2, is approximately

w? = K2¢ 2<1+004' p') (3.27)
0

Provided that the relative deviation of the density from the reference state is small the er
in the dispersion relation are negligible.

The cubic spline kernel is similar in form to a Gaussian kernel and the analysis above
gests that a value of~ 4 will also be satisfactory for the cubic spline iPAp < h < 1.5Ap.
On the basis of the results for the Gaussian kernel we can expe2 forh/Ap=1 and
smaller values of for stability if h/Ap is larger.

Numerical Results

The dispersion relation involves a number of parameters includimgando. In addition
the dispersion relation can vary with the direction of propagation on the lattice. In this sec
we describe results for different values of these parameteis7 andh is 1.3Ap for all
the calculations except those showing the variation of stability with variationgAmp.

Reference dispersion.To provide a reference for the variations we show in Fig. 1 th
dispersion relation fop equal to 1.05 and no artificial pressure. The unit of lengthps
The figure shows the variation @f/ cs with k. As expected the graph is linear for sufficiently
small k, rises to a maximum fok ~ /2, and then decreases. The system is stable. It
clear from this graph that the dispersion relation is significantly in errok ferl and the
error is~5% whenk is 0.6. The deviation from the correct linear relation can be predicte
from the Fourier transform of the kernel.

Varying n. Figure 2 shows the dispersion relation for the case0.9509 andn=
(2, 4, and 6). The direction of propagation is along thexis ande is 0.2. In this case, in
the absence of the artificial pressure, the particles clump and the system is unstable.
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FIG. 1. Reference dispersion relation. Graph shaws;s against wave numbés. All lengths are in units of
the particle spacing\p. The densitypis 1.050,.
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FIG. 2. Dispersion relation fon=2(0O), 4(®), and 6<), p =0.95 ande =0.2.

The dispersion curves far equal to 4 and 6 show that the system is stable. ig 2
the system is unstable @@ is negative the points of the graph are placed orkthgis),
with the instability appearing fd¢ close tor. This instability is to be expected because thq
previous analysis of the short wavelength instability shows thatsf2 the value ot for
stability is approximately twice that farequal to 4. The value effor marginal stability in
the case whereis 4 andh/Ap s 1.3 is approximately 0.19 (see below). In the dag&ap
is 1.5 the criticak = 0.10.

The graphs of Fig. 2 show that the deviations produced bygual to either 4 or 6 are
not significant in the regiok < 0.6, where the dispersion curve can be expected to |
accurate. In this region the dispersion curverf@qual to 4 is more accurate than when
is 6. Elsewhere the deviation of the dispersion with artificial pressure is comparable to
deviation of the reference dispersion curve from the exact linear relation. A good chc
for n appears to be 4 since this combines good stability properties with a small error in
long wavelength limit.

Varyingp. Figure 3 shows the dispersion curve fgtog = (0.95, 1.0, and 1.05) when
n=4, ¢ =0.2 and the propagation is along tkeaxis. The dispersion curves are nearly
identical fork < /2 with differences approximately 1% fer< 0.6. The least stable case
is p = po sinceP is zero and the artificial pressure is zero.

Varyinge. Figure 4 shows the dispersion curve wheris 4, p = 0.9509, h=1.5Ap,
ande = (0.10, 0.125, and 0.15). The critical valuesg$ 0.1. Ith = 1.3Ap the critical value
of ¢ is close to 0.19. Similar results are found for other values afpg.

Varying the propagation direction.Figure 5 shows the effect of different propagatior
directions whem is 4,h/Ap= 1.3, p =0.95p0, ande is 0.2. Propagation along theand
y axes is the least stable but these results show that all directions are stable.

Varyingh. Figure 6 showsthe dispersionrelationfiginp= (1.0, 1.25, 1.50) witm =4
ande =0.2. As expected from the previous analysis the d¢gsep = 1 is just unstable and
the cased/Ap > 1.2 are stable. The larger valuestofjive greater dispersion.

Summary of dispersion resultsThese results show that the estimates of the paramet
in the artificial pressure from the short and long wavelength limits of the dispersion relat
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FIG. 3. Dispersion relation witm =4, ¢ =0.2, andp/p, = 0.95(0), 1.0 (®), and 1.05<).
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FIG. 4. Dispersion relation witm =4, p=0.950,, h=1.5Ap, ande =0.10(O), 0.125(®), and 015(<).
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FIG. 5. Dispersion relation showing the effects of propagation direction with angle in degrees from
x axis=0(0), 30(®), and 45(<) for the casen =4, p =0.95p,, ande =0.2.
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FIG. 6. The dispersion relation for differemt/Ap for n=4, ¢ =0.2, andp = 0.95p,. Results shown for
h/Ap=1.0(0),h/Ap=1.25(), andh/Ap=15(<{).

are a good guide for the direct calculation of the dispersion relation. In particular, the ch
n =4 results gives stability with a small value©ivhich introduces negligible errors in the
exact dispersion relation. The valueeofequired for stability is smaller & Ap increases
for a fixed value oh.

4. SIMULATIONS OF FLUIDS AND SOLIDS

The results from the dispersion analysis do not guarantee thatin highly nonlinear probl
a different choice o€ might be necessary, or even that the tensile instability might persi
We now consider a series of examples which illustrate the effectiveness of the artifi
pressure term. The first of these is a two-dimensional problem similar to that conside
by Swegleet al. [4]. In this case the perturbations are small. The second problem is
simulation of a one-dimensional fluid under extreme expansion where comparisons ce
made with an exact solution. The third is the collision of rubber cylinders which provid
a severe test of how effectively SPH handles tension and compression across a thin e
layer. Because this problem involves the solution of the elastic equations it is necessa
generalize our artificial pressure to an artificial stress term. Finally we consider a com|
problem which involves a weighted box sinking into a tank of fluid.

Dynamics of a Disk

In this section we consider a disk of fluid with the standard equation of state egdal
to 0.98. The particles were initially set up on a rectangulax 50 grid and the particles
within a circle of radius of 0.1 were kept. This produces small perturbations around
boundary which is not initially circular. As for the dispersion calculatibris 1.3Ap and
y is 7. A variant of the leap-frog algorithm was used for the time stepping (see Append
The SPH viscosity (see [17]) was included usingqual to 0.01 ang equal 0.02. Figure 7
shows the positions of the SPH patrticles after 1000 steps when there is no artificial pres
The clumping seen in this figure is similar to that found by Sweglal. [4]. In Fig. 8 the
particle positions are shown at the same time as for figure 7, but calculated using the artif
pressure witn equal to 4 and equal to 0.2. The clumping has disappeared.
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FIG. 7. The positions of the SPH patrticles in a disk with initial velocity zere; 0.950, ande =0.

Extreme One-Dimensional Expansion

The previous example does not give quantitative estimates of the accuracy of the n
ified SPH. To estimate the errors it is convenient to have an exact solution and this ca
obtained for a problem similar to that considered by Dilts [13] who studied the behaviol
one-dimensional SPH simulations when the material was subjected to extreme expansic
practice extreme expansion is not necessarily accompanied by a large decrease in the d
unless there are significant thermal effects. For example, in the two-dimensional expan
ellipse problem [19], the density remains constant to within 2% because contraction fromn
sides compensates the expansion. However, the expansion test does provide some use
formation about the effectiveness of the artificial pressure term and its effect on the accul

The system of equations considered by Dilts has the undesirable feature of changing
hyperbolic to elliptic depending on the expansion. For this reason we consider a sin
system which has an exact solution but remains hyperbolic.

A4
A0

IO
ANPEX

04
%
5
5

O
e,
O

FIG. 8. Asin Fig. 7 but withe =0.2.
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We assume that the equation of state has the form

P =c5(p — po), (4.2)

and the initial velocity igoXx. It is easy to show that a solution exists with density consta
in space, and varying with time according to

%o

)=——,
¢ 1+ got

(4.2)

with the velocity at timet and positionx being¢ (t)x, and the position of a particle with
initial positionXxg is Xo(1 + ¢ot). Assuming the initial density igg the density is then given
as a function of time by

0

t)= , 4.3
pO=17 o (4.3)
and the pressure is given by
__ CEpotot @.4)
1+ ¢ot ' '

The pressure therefore becomes negative and the unmodified SPH would be expec
show the tensile instability.

For the simulations we také=15Ap with Ap=0.1, {p=1, the initial density
o = po =10, and the SPH patrticles are uniformly distributed-ih0 < x < 10. In addition
we use a standard SPH viscosity with coefficieat 1. The viscosity is turned on regardless
of whether the density is increasing or decreasing. Simulations were run with no viscc
with similar results, but it is useful here to include the viscosity to show first that the ten
instability occurs in spite of the extra dissipation, and second that the viscosity does
introduce large errors into the calculation.

Figure 9 shows the velocity field (in units af) for the case wheré=2.26, ;,=1,
and the system has expanded by a factor of approximately 3. The velocity for the «
€ =0 shows a stepped structure arising from the clumping of particles associated witt
tensile instability. There is significant fluctuation near the boundaries because of boun
interpolation errors. The velocity for the case where 0.2 does not show the stepped
structure and it differs from the exact solution by less than 2% except close to the bounde

Figure 10 shows the velocity for particle positions near the centre of the material wl
t =2.94. Whene =0 the tensile instability occurs and the particles move together. Wh
€ =0.2 the particles remain at constant separation. In Fig. 11 the density is shown
a particle close to the center of the material. WhkenO, the density remains close to
the exact value until ~ 4 and then rapidly diverges due to the clumping from the tensi
instability. In the case where= 0.2 the density always remains close to the exact valu
These results were repeated using two different time stepping routines. One of these
a mid point predictor corrector and the other was a predictor corrector version of the |
frog algorithm (see Appendix). The results in each case varied by less than 1% excep
the growth of the errors in the case= 0 was larger in the case of the leap frog algorithm
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FIG. 9. The velocity for the extreme one dimensional expansion against distan@ The case =0,
(b) the case = 0.2. Other details are given in the text.

The Collision of Rubber Cylinders

Swegle [20] used the collision of rubber cylinders to study the effects of the tens
instability. These cylinders should bounce off each other without disintegrating. Otl
codes (see, for example, [20, 21]) simulate the bounce without difficulty, though Sul
et al. [21] found it necessary to use their second formulation in which the forces we
averaged. Swegle found that an SPH simulation of the collision resulted in fragmentat
The fragmentation was greatest when the particles were initially placed on a square gric
least when they were on a grid cylindrically symmetric about the centre of each cylinc
In the following these cylinders will generally be referred to as rings.

This collision problem is a severe test of how well an algorithm handles the compres:s
and tension across a thin shell of material which is bent. The acceleration equation is

v _ 190

Wt ax (#5)

whereo'l is the stress tensor! is theith component of the velocity, and is thejth
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FIG. 10. The same simulations as shown in Fig. 9 but now on a finer scale to show the particle spac
(a) The case where=0, (b) the case =0.2.

cartesian component of the position vector. The stress tensor can be written
ol =—psl 491, (4.6)
where the pressure is given by
P=c3(p — po). 4.7)

Herec is the speed of sound ang is the reference density. We assume a linear elastic le
with the rate of change &/ given by

ds!

5 =2 (é” - 55”6"“() + skalk 4 Qlkg, (4.8)

where

L1/ 80 vl
L) R B _
€ =3 <8Xj + i > (4.9)
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and
o100 aul
QM= ———. 4.10
2 <8xJ ax! ) ( )
The SPH form of the acceleration equation for partécie
oW,
> 2ab (4.11)
X}

. i
) O‘b + ij fn+l—[
g Rab ab

dv, N oy
oM
b=1 a
whereR'l is an artificial stress given by the following rule which generalizes the rule us
(4.12)

earlier for nonelastic fluids. We write
Rib=RJ +R)
(4.13)

R) = —coll;

and choos&Rl andR}) according to the rule that il > 0 then
otherwiseRl is zero. The rule foRLj is obtained by replacing with b.
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To complete the SPH equations we need expressiors fandQ'! in order to evaluate
the right-hand side of (4.8). We use the standard SPH forms of these expressions (se
example, [2]). In addition we use the XSPH correction to the velocity of a particle [22]
that particlea is moved using an average velocity given by

d ‘
— —v +05Z Wab, (4.14)
b :Oab

wherepap is (0a + op) /2. The use of an average velocity is analogous to Swdskay. [21]
using an averaged acceleration for this problem. The correction to the velocity introdu
a term of ordeh? which is consistent with the ordé&? errors in the other equations. The
correction to the velocity introduces dispersion but it is not dissipative [22] which can
seen from the fact that reversing the velocity in (4.14) will reverse the particle trajector
Moving the particles according to (4.14) does not affect the conservation of linear :
angular momentum [22].

In the simulations the unit of density jig, the unit of length is 1 cm, the unit of velocity
is o (852 m/s), and the unit of stressdgc?. In these unitg: (see (4.8) is 0.22. We study two
rubber cylinders, each with inner radius 3 cm and outer radius 4 cm. Each ring moves:
speed 0.05§ so the relative velocity is 0.X2. The particles comprising the rings were
initially set on a cartesian grid since this is the configuration which Swegle [20] found to
most unstable. Those particles within the circles defining the inner and outer radii were k
This gives the boundaries of the rings a slighly roughened appearance. The initial ne:
neighbor separation was 0.1 cin= 1.5Ap and the SPH viscosity coefficieat= 1.

Figure 12 shows the positions of the two rings just after maximum compression
the case where =0. The rings fracture as in Swegle’s [22] calculation, though here ti
fragments are larger and, remarkably, reattach later in the calculation. Figure 13 show
positions of the two rings for the case where-0.15. Figures 13b and 13c corresponc
approximately to the TODY results after 500 and 1Q@) respectively. The rubber rings

FIG. 12. Rubber rings shortly after maximum compression showing fracture in a collision simulated w
€ =0. Other details are given in the text.
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FIG. 13. Rubber rings bouncing without fracture in a collision simulated with0.2. (a) The rings atimpact,
(b and c) during impact, and (d, e, and f) the rings as they bounce off each other and begin to oscillate freely

bounce off each other without fracturing and they continue to oscillate as shown in Figs.
and 13f. If we run the simulation witk=0.1, one small fracture begins to open up in
each ring and then closes before the rings have bounced apart. These results confiri
effectiveness of the artificial stress term.

Comparison with the results of Swegle [22] shows that the differences between the pre
calculations and the calculations using the TODY code are within the measurement el
for the maximum vertical diameter, and within 10% for the maximum horizontal diame
for times of 500 and 1000s after impact.

5. NONLINEAR WAVE GENERATION

The final example we consider is the SPH simulation of a weighted box sinking rapi
into a wave tank [16]. As the weighted box sinks it drives water from underneath it, &
this forces the water near the box to rise and form a plunging wave. A solitary wave is ¢
generated. A detailed comparison between dynamics of this system (including both w:
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FIG. 14. Frames from simulations of the fluid motion produced when a weighted box (upper left of the ta
sinks into a tank of water. (a) The velocity field for the case where there is not artificial pressure. (b) The velc
field when there is artificial pressure.

and box), and an experiment, shows that the SPH results typically have erretaf
The results also show convergence of the SPH simulation except for the details of th
of the plunging wave which are very sensitive to the resolution [16]. In Fig. 14, we sh
the velocity of the SPH particles time 0.28 s when the box, which starts at a height 0.2
has dropped to 0.1 m. Figure 14a shows the velocities with artificial pressure and Fig.
shows them without artificial pressure. The pressure is initially positive, but it can becc
negative in the tip of the plunging wave. The effect of the artificial pressure is entir
negligible except near the tip of the plunging wave where it results in a more coherent
The later development of the system is very similar with and without the artificial presst
Differences of roughly 1% are typical.
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6. SUMMARY

This paper has shown that a simple artificial stress term removes the tensile instabili
a wide variety of problems. In the case of a fluid the artificial stress is an artificial press
and we have shown how results from the short and long wavelength limit of the dispers
relation can fix the parameters of the artificial pressure. The analysis indicates that the €
of the artificial pressure on the long wavelength limit of the dispersion relation is negligib
and this result is confirmed by detailed numerical calculations.

Applications to fluid dynamical problems show that the artificial pressure is effecti
even in highly nonlinear problems such as extreme one-dimensional expansion with
density decreasing by a factor of 5.

A simple generalisation of the artificial pressure idea to elastic body dynamics requ
the introduction of an artificial stress. In this paper the artificial stress has been constru
by analogy to the artificial pressure and the resulting algorithm is effective. For exam|
if the artificial stress is applied to the simulation of bouncing rubber rings, they do r
fracture. However, in this case, itis necessary to move the particles with an average vel
to avoid the fracture even when the artificial stress is used.

MHD problems which also show a tensile instability arising from the magnetic stre
could also be treated by including an artificial stress term in the equations of motion.

APPENDIX

To integrate the set of equations describing the change of velecitgnsity o, and
positionr given by

dv

- =F Al
= =F. (A1)
dr

— A2
il (A2)

and

dp

=D A3
" , (A3)

we assume that we have the initial valwés F°, r°, DO, and time stepAt. The predictor
step is

v=v0+ AtFO, (A4)
r=r%+ Atv® + 0.5(At)2F°, (A5)

and
p=p"+ AtDC. (A6)

New values ofF and D are calculated and corrected valuesvo@ind p are calculated
according to

v="0+0.5At(F — F%, (A7)
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and

p=p+05At(D— D9. (A8)

The value of is not corrected. In a purely mechanical problem where only the velocity a
position are calculated the algorithm is equivalent to leap frog. In the present case, ¢
from the way the position is integrated, the variables are integrated with a trapezoidal |
If the XSPH technique is used the right-hand side of Eq. (A2) is replaced by the form shc

in

a b 0N =

© 00 N O

11.
12.

13.

14.
15.

16.
17.
18.
19.
20.
21.
22.

(4.14).
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